If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10-n^2=-108
We move all terms to the left:
-10-n^2-(-108)=0
We add all the numbers together, and all the variables
-1n^2+98=0
a = -1; b = 0; c = +98;
Δ = b2-4ac
Δ = 02-4·(-1)·98
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{2}}{2*-1}=\frac{0-14\sqrt{2}}{-2} =-\frac{14\sqrt{2}}{-2} =-\frac{7\sqrt{2}}{-1} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{2}}{2*-1}=\frac{0+14\sqrt{2}}{-2} =\frac{14\sqrt{2}}{-2} =\frac{7\sqrt{2}}{-1} $
| 2(7x+1)=(3x-1) | | 2y-26=5(y-7) | | -2/5z-7=3 | | 15x−9x=12 | | (6x+8)=(7x-7) | | £2.50x=£17.50-£5 | | 2(x+1)+2=-x+1 | | 2+23x=99-x | | 4t+t=15 | | (6x+8)+(7x-7)=180 | | -3(2x+3)=4x-4 | | 2/3x-1=2 | | -13+7x=4(2x-2) | | 47.2=81.9+k/5.2 | | 1/6x+1/3=1/2 | | 2(3x+2)-4x=-8 | | 3y-2/2-2y+3/3=2/3-y | | 5x+57=67 | | 293g+2)=(1/2)(12g+8) | | 3-(2x-3)=-x+1 | | 4x=-24+-8x | | 13x-1=4(3x+2)-7 | | 4(x-3=2x+8 | | 15(x+1)=-3x+9 | | -3n+15=3-9n | | 6r-1=17 | | 24+8x=48x+64 | | 6(x-4)=3(x+5 | | 14n+16=-39+3n | | -8-9x=-1+5x | | -6=4b/18 | | 5n-30=4n-28 |